skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hu, Jiaxin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Bozdag, Serdar (Ed.)
    Studying the mechanisms underlying the genotype-phenotype association is crucial in genetics. Gene expression studies have deepened our understanding of the genotype  →  expression  →  phenotype mechanisms. However, traditional expression quantitative trait loci (eQTL) methods often overlook the critical role of gene co-expression networks in translating genotype into phenotype. This gap highlights the need for more powerful statistical methods to analyze genotype  →  network  →  phenotype mechanism. Here, we develop a network-based method, called spectral network quantitative trait loci analysis (snQTL), to map quantitative trait loci affecting gene co-expression networks. Our approach tests the association between genotypes and joint differential networks of gene co-expression via a tensor-based spectral statistics, thereby overcoming the ubiquitous multiple testing challenges in existing methods. We demonstrate the effectiveness of snQTL in the analysis of three-spined stickleback Gasterosteus aculeatus data. Compared to conventional methods, our method snQTL uncovers chromosomal regions affecting gene co-expression networks, including one strong candidate gene that would have been missed by traditional eQTL analyses. Our framework suggests the limitation of current approaches and offers a powerful network-based tool for functional loci discoveries. 
    more » « less
    Free, publicly-accessible full text available April 17, 2026
  2. We consider the problem of multiway clus- tering in the presence of unknown degree heterogeneity. Such data problems arise commonly in applications such as recom- mendation system, neuroimaging, commu- nity detection, and hypergraph partitions in social networks. The allowance of de- gree heterogeneity provides great flexibility in clustering models, but the extra com- plexity poses significant challenges in both statistics and computation. Here, we de- velop a degree-corrected tensor block model with estimation accuracy guarantees. We present the phase transition of clustering performance based on the notion of an- gle separability, and we characterize three signal-to-noise regimes corresponding to dif- ferent statistical-computational behaviors. In particular, we demonstrate that an intrin- sic statistical-to-computational gap emerges only for tensors of order three or greater. Further, we develop an efficient polynomial- time algorithm that provably achieves exact clustering under mild signal conditions. The efficacy of our procedure is demonstrated through both simulations and analyses of Peru Legislation dataset. 
    more » « less
  3. Higher-order tensors have received increased attention across science and engineering. While most tensor decomposition methods are developed for a single tensor observation, scientific studies often collect side information, in the form of node features and interactions thereof, together with the tensor data. Such data problems are common in neuroimaging, network analysis, and spatial-temporal modeling. Identifying the relationship between a high-dimensional tensor and side information is important yet challenging. Here, we develop a tensor decomposition method that incorporates multiple feature matrices as side information. Unlike unsupervised tensor decomposition, our supervised decomposition captures the effective dimension reduction of the data tensor confined to feature space of interest. An efficient alternating optimization algorithm with provable spectral initialization is further developed. Our proposal handles a broad range of data types, including continuous, count, and binary observations. We apply the method to diffusion tensor imaging data from human connectome project and multi-relational political network data. We identify the key global connectivity pattern and pinpoint the local regions that are associated with available features. The package and data used are available at https://CRAN.R-project.org/package=tensorregress. Supplementary materials for this article are available online. 
    more » « less
  4. We consider the problem of tensor decomposition with multiple side information available as interactive features. Such problems are common in neuroimaging, network modeling, and spatial-temporal analysis. We develop a new family of exponential tensor decomposition models and establish the theoretical accuracy guarantees. An efficient alternating optimization algorithm is further developed. Unlike earlier methods, our proposal is able to handle a broad range of data types, including continuous, count, and binary observations. We apply the method to diffusion tensor imaging data from human connectome project and identify the key brain connectivity patterns associated with available features. Our method will help the practitioners efficiently analyze tensor datasets in various areas. Toward this end, all data and code are available at https://CRAN.R-project.org/ package=tensorregress. 
    more » « less
  5. We consider the problem of tensor decomposition with multiple side information available as interactive features. Such problems are common in neuroimaging, network modeling, and spatial-temporal analysis. We develop a new family of exponential tensor decomposition models and establish the theoretical accuracy guarantees. An efficient alternating optimization algorithm is further developed. Unlike earlier methods, our proposal is able to handle a broad range of data types, including continuous, count, and binary observations. We apply the method to diffusion tensor imaging data from human connectome project and identify the key brain connectivity patterns associated with available features. Our method will help the practitioners efficiently analyze tensor datasets in various areas. Toward this end, all data and code are available at https://CRAN.R-project.org/ package=tensorregress. 
    more » « less